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Abstract

Observing websites behavior is crucial to understand the state of web privacy.
To observe websites’ behavior, researchers need to capture WebAPI function calls
by either changing the websites code or manipulating the browser. Researchers
have used either approach to write highly specialized tools that collect data to
answer their specific research question. This leads to a lot of duplicated effort
in the fundamental building blocks of website instrumentation. In this thesis I
will present CallMonitor, a general purpose website observability component for
the Firefox browser, which aims to make one-off tools obsolete. After explaining
its current implementation and its design decisions, I will evaluate it against an
existing general purpose WebAPI instrumentation tool, OpenWPM’s JavaScript
instrument, and discuss that while the current implementation isn’t better than
the JavaScript instrument, CallMonitor’s design allows it to surpass the limitations
inherent in the JavaScript instrument’s design.

1 Introduction

1.1 Motivation
The World Wide Web is a diverse ecosystem that most people use in their day-to-day
lives. The browser is a complex execution platform through which most people
experience the web. The variety of websites that a user can visit range from personal
websites, that have been written over a weekend to web portals created and operated
by multi-billion dollar entities and everything in between. All of them aim to provide
an experience and use the browser to provide that experience.
Through the use of client-side scripting, most commonly JavaScript, and rich browser
APIs website operators are able to deliver a highly dynamic, tailored and engaging
user experience. However, the big interaction surface between websites and browsers
also allows for websites to collect data regarding the configuration of a user’s browser
and system, so-called browser fingerprinting [1].
To observe whether a website is engaging in browser fingerprinting privacy re-
searchers need to be able to observe and analyze website’s behaviors.
While there are existing tools in this space, most of them are purpose-built and
non-reusable, which leads to duplicated effort and a lack of comparability between
studies.
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1.2 Terminology
The following section will define common terms and introduce less commonly known
terms for the reader.

Document The Web Hypertext Application Technology Working Group (WHATWG)
defines a document as a structured, markup-based file, that can be represented
through a tree [2]. In the context of the World Wide Web, most documents are HTML
documents, but other formats such as SVG or XML are also common.

Browser Browsers originally were applications that loaded and rendered documents
loaded from the internet. Over time, they expanded their capabilities to not only
display static documents, but also run scripts and display multimedia content such as
pictures, audio and video. The latest browsers also offer the user to share information
about themselves or their device, such as their location or attached devices, such as
cameras, microphones or bluetooth connected devices.
The three most popular browsers are in order Google Chrome, Apple Safari and
Mozilla Firefox [3].

ECMAScript ECMAScript is a language standard created by the ECMA organization
that specifies a weakly typed and dynamic programming language with first class
functions [4].
ECMAScript uses prototype based programming, meaning that instead of an object
being of a certain type, which defines the valid methods and fields on it, objects can
share behaviors and properties by having the same prototype object. When properties
that are undefined on the current object, the property is looked up on its prototype.
This process happens recursively until the property is either found or the prototype of
an object is undefined.[5].
ECMAScript is implemented by the JavaScript interpreters of the browsers. Each
major engine maintains its own JavaScript interpreter. Firefox’s interpreter is called
SpiderMonkey. Chrome’s is named V8 and Safari has JavaScriptCore. The ECMAScript
specification intentionally does not define facilities for receiving data or communicat-
ing computation results with anything outside the language environment, which is
explicitly left to hosts, such as browsers.

WebAPI A WebAPI is an application programming interface (API) that is exposed
to JavaScript code running the browser. Since ECMAScript doesn’t specify a way for
the JavaScript code of a website to interact with the rest of the browser, browser
vendors created APIs that enable websites to interact the loaded document and the
browser [6].
These APIs are specified by the World Wide Web Consortium (W3C) or the Web
Hypertext Application Technology Working Group (WHATWG) through numerous
WebAPI standards. WebAPIs provide a wide range of functionality including basics
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Figure 1: A visualization aid showing components of a browser (rectangles), the
JavaScript code of a website (round box) and their possible interactions
(arrows). The figure highlights that websites can only observe and interact
with its own document or external resources through WebAPIs

such as DOM access and manipulation as well as more advanced tasks such as
geolocation or audio-video-processing. They also allow querying for computer specific
state such as the operating system, the current window size, the GPU model and
driver or installed fonts.

DOM The Document Object Model (DOM) is the core abstraction of the Web. It
connects web pages to scripts or programming languages by representing the structure
of a document as a tree [7].
While it could theoretically be used in other languages or to represent other docu-
ment types, it usually describes the programmatically exposed structure of an HTML
document to JavaScript running on the same website.
The DOM standard is developed in conjunction with the HTML specification by the

WHATWG.

Browser Fingerprinting Browser Fingerprinting, as defined by Laperdrix et. al., is
the practice of collecting data regarding the configuration of a user’s browser and
system [1].
While most WebAPIs including the DOM provide information, that expose little or no
entropy, meaning they return the same or almost the same result on any browser and
system, some WebAPIs produce a wide variety of results that are (almost) unique to
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an individual’s browser and system, which allows websites to identify users across
browsing sessions.
Some of these APIs are the graphics (WebGL) and audio WebAPIs as they expose
access to the underlying hardware. The WebGL APIs also expose information about
the system configuration, such as installed fonts or drivers.

1.3 Problem statement
It is imperative that Web privacy researchers are able to observe how a website uses
JavaScript to interact with the browser, to detect whether it is fingerprinting the user
and if so, which techniques it uses.
As JavaScript needs to use the WebAPIs to affect or observe state outside the inter-
preter (see Figure 1) and browser fingerprinting requires information outside the
interpreter, it is sufficient for the researchers to be able to observe all calls through the
WebAPIs to detect whether a website is engaging in malicious activities. Unfortunately
there are no standardized interfaces for observing WebAPI function calls. This leaves
researchers with two options:

1. Change the websites code to record calls before they reach the WebAPI.

2. Change the browser to record WebAPI function calls after they have been made.

Current research uses both of these approaches, however most commonly they only
modify the browser in such a way that it answers their specific research question [8]
[9]. This lack of reusability leads to a lot of duplicated effort and hinders combining
and comparing the collected data. To mitigate this, a number of open source browser-
based web crawlers have been published in the last years, such as DuckDuckGo’s
Tracker Radar Collector [10] or Kraaler [11].
One of the most commonly used crawlers is OpenWPM, a modular web crawler writ-
ten in Python that uses the Firefox browser and the Selenium automation framework
to crawl the web [12]. It provides facilities to detect a wide range of website activities
as well as a platform that allows for parallelism and abstracts data storage. One of
OpenWPM’s tools for data collection is the JavaScript instrument which injects scripts
into the website to record WebAPI function calls.
Due to the popularity of Chromium-based browsers (such as Google Chrome or
Microsoft Edge), many browser-based crawlers (including the Tracker Radar Collector
and Kraaler) use Chromium for data collection. For crawls using Firefox, OpenWPM
is the leading option, but as it changes the website code to intercept calls to the
WebAPI functions, it is inherently limited in performance and detectability by having
to use JavaScript.
The lack of a browser-integrated, general purpose instrumentation tool that uses the
Firefox browser will be addressed in this thesis. This tool should allow researchers
to instrument arbitrary WebAPI function calls with sufficient metadata to be able
to advance the state of web privacy research while being indistinguishable from an
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uninstrumented browser and ensure that web privacy research doesn’t only rely on
data collected for a single engine.
This goal is achieved, if CallMonitor captures the same width of information as
the JavaScript instrument currently does, without CallMonitor exhibiting the same
shortcomings as the JavaScript based implementation.

1.4 Structure
In Section 2 I will explain the JavaScript instrument’s architecture and examine its
strengths and weaknesses.
After that, in Section 3, I will explain CallMonitor, my implementation of a compo-
nent, that changes the way Firefox processes WebAPI function calls to record them. I
will begin by defining a set of requirements, explain the Firefox process model, derive
an architecture for the component, and discuss three implementation issues.
Finally, in Section 4, I will evaluate my current implementation against the JavaScript
instrument and conclude by defining the steps necessary for my proof of concept to
achieve feature parity with the existing implementation in Section 5.
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2 OpenWPM’s JavaScript Instrument
OpenWPM is an open source web privacy measurement platform, built on top of
Firefox with parallelism, robustness and modularity in mind [12]. It provides tools
for simulating user activity, through the use of the browser automation framework
Selenium and recording a wide range of website behavior. Its modularity allows
researchers to define new observation tools and crawling strategies, making it flexible
enough to be used in over 76 studies. [13]
One of these observation tools is the JavaScript instrument. It allows researchers to
specify which WebAPI function calls they are interested in and which kind of data
should be captured for each call.
In this section I will outline the foundational knowledge required to understand the

JavaScript instrument, describe its implementation and finally outline its strengths
and weaknesses.

2.1 The Architecture
OpenWPM uses a custom add-on, that cotains its data collection utilities, which
communicates with the execution platform, from where it receives commands and to
which it sends the collected data.
This add-on, as all modern add-ons, uses the WebExtension standard, which will be
described in this section. Additionally, this section will explain how the JavaScript
uses the facilities provided by the WebExtension standard to record WebAPI function
calls.

2.1.1 Architecture of a WebExtension

Extensions, also called add-ons, can modify and enhance the users experience of
a browser. Common use cases include ad blockers, password managers or themes.
Extensions in Firefox use the standardized WebExtension APIs. These APIs expose a
wide variety of functionality to add-on developers, such as the clipboard, the users
history or multiple points at which the add-on developer can intercept and manipulate
requests made to the internet by websites (before the request is made, after it has
been received, etc.). [14].
The standard also specifies a packaging format to declaratively describe a WebExten-
sion. A WebExtension can contain the following artifacts:

• manifest.json

• Background scripts

• Content scripts

• Icons

• Sidebars, popups, and options pages
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• Web-accessible resources

The manifest.json is mandatory as it contains extension metadata, including which
other files are part of the extension and which APIs the add-on intends to use, so the
user can be asked for those specific permissions when installing the it [15].

Background Scripts Background scripts maintain long-term state. They have access
to the full WebExtension APIs, if they have requested the appropriate permissions.
E.g. background scripts can dynamically register new content scripts or maintain a
connection to external servers.

Content Scripts Content scripts have access to and can manipulate web pages.
They are loaded into the web page and run in the context of that page.
They have limited access to WebExtension APIs but have the ability to send messages
to the background script which can then interact with the world on their behalf.
While content scripts are running in the context of the web page and can access
variables exposed on the document of the website, they do not have the same view
of the document as the JavaScript of the website, instead they see the document
through so called Xray Wrappers.

Xray Wrappers To allow WebExtensions to safely access the contents of a web page,
Firefox always exposes the native version of a WebAPI to content scripts. This means
that even if e.g. a website were to override a property on an HTML element like so

1 document . getElementById (" testElement "). matches =
2 (s) => { return true ;}

if the WebExtension were to call the matches function on testElement, it would still call
the original implementation. This way the WebExtension can trust that it is able to
safely navigate the DOM or receive truthful information when querying for website
state [16].
However, this practice also works the other way around, so any modifications the
content script does do its view of the document do not get reflected back into the
websites view.
This is problematic when instrumenting WebAPIs with the JavaScript instrument, as
the instrumentation code has to wrap the WebAPIs in order to capture calls from the
website before they reach the WebAPI. The circumvention of this mechanism and its
consequences are described in the next section.
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2.1.2 JavaScript Instrument

The JavaScript instrument is part of the add-on, that OpenWPM installs in the Firefox
browser before it visits a website, to collect data during a visit. In particular, the
JavaScript instrument allows the user to specify a set of WebAPIs and whether they
want to capture the callstack or the arguments of a WebAPI function call.
Figure 2 shows the process by which the JavaScript instrument gets set up and
sends information back to the aggregator (an external server receiving and saving
out captured data) once a WebAPI function gets called.
The diagram’s left side should be understood as OpenWPM’s automation platform,
as it issues commands to and receives information from the browser and the add-on.
The diagram starts off after the browser has been started, the extension has been
installed, and the platform has detected that the background script is ready to receive
information.
The first step is sending the config to the background script, which then proceeds
to generate an appropriate content script, which it registers with the browser using
WebExtension APIs. At this point the configuration is baked into the script and can
no longer be changed.
Once the platform is informed that the registration is complete, it instructs the
browser to visit a website. This results the browser creating a new WebContent
environment, loading the content, injecting the previously registered content script
into the scope of the website and executing it. This is the point where the content
script needs to bypass the X-Ray wrappers to make sure that it isn’t wrapping its own
WebAPIs but the ones exposed to the web content. To do this the content script creates
a <script> tag as the first element, letting it do the wrapping and then removing it
again. As this happens before the web content starts executing, it is undetectable for
the website code.
Wrapping is done in two different ways depending what is being instrumented. If
it is a (nested) property of the global Window object, such as window.screen.height,
the JavaScript instrument calls Object.defineProperty on the property to wrap the
property in a getter. However, if the object being instrumented is one that does not
exist by default, such as the IntersectionObserver, the JavaScript instrument overrides
its prototype’s properties instead. This way, any object that has IntersectionObserver
as its prototype, will call instrumented methods.
As the wrapping code now is no longer considered part of the WebExtension code it
doesn’t have to deal with X-Ray wrappers but also has no access to the WebExtension
APIs. To still communicate with the background script it has to use the content script
as a relay. The wrapping code emits a custom event, which is propagated to the event
handler of the content script, which then uses the runtime.SendMessage API to forward
the message to the background script. To capture information about the caller of the
API, the instrument creates a JavaScript Error object and accesses the Firefox-specific
API stack which contains the callstack of an error as a string [17]. It also captures
the arguments array by serializing them before the WebAPI function call.
This process is repeated for every call to a WebAPI function that has been instru-
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JavaScript instrument to OpenWPM’s execution platform (at the left)
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mented until the platform receives a command to close the tab and orders the browser
to do so. The browser then proceeds to destroy the tab containing the web content
environment and the content script.

2.2 Strengths and Weaknesses
The JavaScript instrument has some very clear strengths and less obvious weaknesses.
Its strengths lay in its unrestricted access to JavaScript’s introspection capabilities.
Being able to access information about the caller of a WebAPI via the call stack and
serialize the arguments using language level utilities is extremely powerful, as it
allows it to emit rich events, that capture a lot of metadata. This allows researchers
to later correlate these events and use them for complex analysis.
An example of a websites script and the respective captured event can be seen in
Figure 3
Through WebExtension APIs exposed in the content script, OpenWPM is able to
record the window, tab and frame id. This makes it possible to attribute the function
call to a specific iFrame, an isolated document which websites can embed in them-
selves but don’t control [18]. This information is crucial to understand, if the call
was made by the website visited, a so called first-party call, or by another site that
was embedded, which would be a third-party call.
In addition, by analyzing the callstack, they can observe the URL of all scripts
involved in the call as well as the location of each function in their respective files.
This information is useful to determine, the source of tracking scripts even when they
are embedded in a first-party site.
However, the instrumentation also has one major vulnerability, the wrapping code

which is running as part of the website. As it has disabled the Xray wrappers to have
direct access to the WebAPIs, the browser treats it as part of the website. This allows
a malicious website to detect whether a given API is instrumented by calling toString
on the function. If it has been overwritten, toString will return the source code of the
function, otherwise it will just return [native code]. This detection vector is used in
Section 4 to evade the JS instrument.
In addition to malicious detection, the overwritten function could also be detected by
benign, so-called polyfill scripts, that are used to implement newer features to older
browser, by checking if the function exists and if it can not be detected, providing
their own JavaScript implementation for the feature. Since the wrapped functions
does not behave like a native implementation, the script might mistake them for
missing or outdated functions and overwrite them.
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1 function func(data) {
2 window .btoa(data);
3 }
4 function main () {
5 func("abcd");
6 }

1 {
2 "id" : 1,
3 " incognito " : 0,
4 " browser_id " : 1812454466,
5 " visit_id " : 7003191432381221,
6 " extension_session_uuid " :

↪→ "ac42fb19 -c56f -4b30 -9025 - c69a1572adbb ",
7 " event_ordinal " : 6,
8 " page_scoped_event_ordinal " : 0,
9 " window_id " : 1,

10 " tab_id " : 1,
11 " frame_id " : 0,
12 " script_url " : "http :\/\/0.0.0.0:8000\/ evil.html",
13 " script_line " : "6",
14 " script_col " : "33",
15 " func_name " : "func",
16 " script_loc_eval " : "",
17 " document_url " : "http :\/\/0.0.0.0:8000\/ evil.html",
18 " top_level_url " : "http :\/\/0.0.0.0:8000\/ evil.html",
19 " call_stack " : " func@http :\/\/0.0.0.0:8000\/ evil.html :6:33
20 main@http :\/\/0.0.0.0:8000\/ evil.html :13:11 ",
21 " symbol " : " window .btoa",
22 " operation " : "call",
23 "value" : "",
24 " arguments " : "[\" abcd \"]",
25 " time_stamp " : "2022 -01 -22 T12 :01:17.608 Z"
26 }

Figure 3: A piece of JavaScript code and a JSON representation of the event captured
by the JavaScript instrument when the window.btoa function was called.
The event is rich in metadata, capturing not only the arguments but also
the exact caller location in the file and the callstack
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3 CallMonitor
CallMonitor is a component for Firefox that designed to allow consumers to dynami-
cally instrument arbitrary WebAPIs.
Consumers in this context are both researchers through a non-standard extension to
the WebExtension API and browser developers through a Firefox internal API.
In this section I will cover the requirements for the component, explain the necessary
concepts of Firefox to understand the design of CallMonitor, give a high level overview
of the design and conclude by highlighting interesting implementation decisions.

3.1 Requirements
CallMonitor aims to replace OpenWPM’s JavaScript instrument by being undetectable
while maintaining the vast amount of information captured by the current instrumen-
tation. To compete CallMonitor needs to capture the callstack of a WebAPI function
call as well as information about the top level window and the iFrame from which
the call originated. The experience of using it should not be worse than using the
existing instrumentation.
In order for CallMonitor to be accepted into the Firefox codebase, it must be main-
tainable, tested, and easily extensible.
Since Firefox has been under active development for more than 20 years, it has built
custom infrastructure for common problems in the codebase, such as abstractions for
inter-language function calls or interprocess communication.
In order to achieve my maintainability requirement, I used these building blocks and
designed my component around them.
In Section 5 I will compare the progress made as part of this thesis against these
requirements.

3.2 Implementation
In this section I will explain the process layout of Firefox and the existing solutions for
IPC and inter-language function calls to give context for the layout of the CallMonitor.
I will then proceed to explain CallMonitor’s current implementation leaving my design
considerations for Section 3.3

3.2.1 Context

Multi Process Architecture All major browsers use a multi process architecture.
This means they run different tasks on different processes, allowing them to use OS
level security features to protect against malicious web code [19] [20].
Firefox, for example, uses a central process called main process, to maintain browser
state, such as history or the password manager and other processes to deal with the
different stages of processing a website, such as loading the website in the socket
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process, parsing the HTML, CSS and JavaScript and executing their JavaScript in a
web content process or drawing them in the render process [21].
This separation of responsibility and defining static interfaces between processes
through actors, makes it possible to mitigate the impact of a single exploit. Should,
for example, an attacker be able to achieve arbitrary code execution on the network
process, they will still be unable to access cookies or draw to the screen.
The processes that are relevant in the context of this thesis are

• the web content process as the place, where CallMonitor collects the information
about WebAPI function calls

• and the main process, where CallMonitor subscribers register to receive infor-
mation

WebIDL WebIDL is an interface definition language, that is used by the WHATWG
to specify WebAPIs [22]. The IDL is a typed language that specifies standardized
interfaces and defines how these interfaces should be exposed to ECMAScript. By
defining its semantics in terms of ECMAScript, the IDL is able to achieve consistent
behavior, regarding things such as iteration order, for different WebAPIs and across
browsers.
Firefox consumes these IDL files to generate binding code. This binding code gets
called whenever a WebAPI function is invoked. It unwraps the JavaScript arguments,
if they exist, checks if the invariants encoded in the IDL are upheld, and calls the
C++ implementation of the function.
This will be discussed further in Section 3.3.1.

Actors To allow for secure communication across processes Firefox uses an actor
model. In the traditional actor model, there is no global state instead actors are
independent entities that are only able to perform three types of actions, changing
their internal state, sending messages to other actors or creating new actors [23].
However unlike the traditionally defined actor semantics Firefox’s actors can not
reach out to arbitrary other actors or create arbitrary new actors. Instead, actors
always exist as pairs, where one side is defined as a parent and the other as a child,
and can only send statically defined messages to their counterpart. These actor pairs
are split into two classes, top-level actors and managed actors. Top-level actor pairs
initialize themselves by connecting with their counterpart over a message pipe. This
connection is then used to communicate between the two endpoints. All processes in
Firefox have a top-level actor pair to communicate with the main process, this way
the main process can coordinate the different processes. The main process always
acts as a parent in these relationships.
Managed actors do not initialize themselves but instead get created by their manager,

when their manager receives a request to create them. Since a managed actor doesn’t
have its own message pipe, it has to go up the management chain to the top-level
actor to use its message pipe to reach its counterpart on the other side. As managed
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Figure 4: A visualization aid showing the relationship between top level actors and
their managees

actors are subordinate to their manager, they will be automatically shut down when
their manager is.
Figure 4 exemplifies this by showing a simplified actor setup for the relationship
between a content process and the main process. When PCallMonitorChild wants
to send a message to its parent, it does not have a direct connection but instead
communicates with its counterpart through the message pipe of the top-level actor,
which happens to be its direct manager.
Actor protocols in the Firefox code base are defined by IPDL, the interprocess com-
munication definition language. Protocols have to use the prefix P. In the examplary
figure the top-level protocol is called PContent, which manages the PExtensions and
PCallMonitor protocols. Each protocol defines which types of messages can be sent,
in which directions they can be sent and which values they contain.

XPCOM XPCOM, the Cross Platform Common Object Model, is a technology that
allows sharing objects between different programming languages. In the context of
Firefox XPCOM allows developers to write a component in a language of their choice
and expose it to JavaScript, C++ and Rust.
XPCOM interfaces are defined in XPIDL, the XPCOM interface definition language
and canonically are prefixed with nsI. XPIDL allows Firefox developers to typed
interfaces with functions and properties. An object that implements an XPCOM
interface is commonly referred to as an XPCOM component. References to XPCOM
components can be acquired in a language-agnostic way through XPCOM services.
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Figure 5: A UML class diagram of all C++ classes in the CallMonitor component

The CallMonitor implementation uses XPCOM in two places. On the event cap-
turing side, nsICallMonitorEventManager is defined to be able to capture events in
whatever language the WebAPI might be implemented in. On the consumer side,
nsICallMonitorSubscriptionManager exposes the subscriber interface to any language
that consumers want to use. Both of these interfaces will be described in more detail
in the next section.

3.2.2 CallMonitor’s Architecture

In this section I will present the current architecture of CallMonitor, by first outlining
the high level architecture and then describing the implementation by following the
process of registration and event capturing.
The current implementation is a proof of concept that only exposes its registration
interface to privileged JavaScript code in the main process. It captures events for
two WebAPI functions, namely btoa and atob, which en- and decode binary data
to/from ASCII respectively. The captured events contain the function argument, but
no information about the caller or any other context.
The code of the current implementation can be found under https://phabricator.
services.mozilla.com/D110681.
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High-Level CallMonitor has to interact with the rest of the Firefox codebase at two
points. It has to collect data, when a WebAPI function call happens in a web content
process and inform consumers in the main process that an event they registered for
has occurred.
The interfaces for these two tasks are defined in nsICallMonitorEventManager and

nsICallMonitorSubscriptionManager respectively.
The rest of the component is designed around maintaining the state or providing the
connection between these two interfaces.
See Figure 5 for all classes involved.

Registration When another part of Firefox has acquired a reference to the
CallMonitorManager through the CallMonitor service, it can register a subscriber with
the CallMonitor component; the callback and its associated config are then stored in
the CallMonitorManager. It then returns a unique id back to the caller, which allows
the caller to unregister the callback at a later time.
In the current implementation the CallMonitorManager does not forward any in-
formation to the rest of the component, however other approaches to configuration
handling get discussed Section 3.3.2.

Event Capturing When an instrumented WebAPI function gets called, it acquires
a reference to the CallMonitorChild by asking its manager (PContentChild) to either
create it or return an existing reference.
It then calls the submitEvent method, which in turn forwards the event to the Main
Process by calling SendEventHappened, a message defined in the PCallMonitor protocol.
When the CallMonitorParent receives the message, it acquires a reference to the
CallMonitorManager and forwards the message. The CallMonitorManager then checks the
subscribers and invokes their callback, should they have registered for the specific
WebAPI function.
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3.3 Design Considerations
In this subsection I will discuss the design decisions I made while developing Call-
Monitor. For each decision point I will motivate its relevance, present multiple
options, and judge them on their merit in a proof of concept and a production-grade
implementation.

3.3.1 The Layers of a WebAPI Function Call

To capture WebAPI events there has to be code that gets run on each invocation of
any WebAPI. But as each call passes through multiple layers of abstractions before
returning a value to the user, it is unclear at which layer our instrumentation code
should exist.
In this subsection I will present the different layers a WebAPI function call passes
through and discuss whether the event capturing code should be at that layer.
To evaluate in which layer the instrumentation code should be written I will consider
the following criteria:

Scalability of the Approach This criterion is meant to capture how easy it is to
instrument the entire current WebAPI surface but also how much additional work is
required to include future WebAPIs.

Facilities for Serialization To be able to send the captured event to the main process
the instrumentation needs to be able to serialize to an IPC compatible format.

Access to Information about the Caller To achieve feature parity with OpenWPM’s
JavaScript instrument, CallMonitor needs to be able to capture information like the
iFrame, the top-level URL and the URL of the caller.

The Website’s JavaScript By injecting code into the websites scope, instrumen-
tation code is able to observe arbitrary WebAPIs calls, use the JavaScript built-in
serialization facilities and capture not only the arguments but the full callstack and
other relevant context. This allows instrumentation at this layer to fully meet the
three requirements; however, as discussed in Section 2.2 this approach also has sig-
nificant drawbacks, that CallMonitor has to avoid in order to supersede OpenWPM’s
JavaScript instrument.

Interpreter Layer As JavaScript is an interpreted language the next layer below the
website is the interpreter (see also Figure 6).
Firefox’s interpreter, Spidermonkey, provides a JavaScript Debugger object, that a
Firefox developer can use as a prototype for their own object and then define their
specialized handlers for certain events such as onFrameEnter or onError. One of the
events a user can specify a listener for is a native function call from the interpreter.
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Figure 6: A schematic overview of the components involved in a single WebAPI
function call. Each component of the call stack will be considered for
instrumentation the Section 3.3.1

As all WebAPIs are currently implemented in C++, a onNativeCall listener would get
invoked for every WebAPI function call. The listener receives a JSContext object when
being invoked, which can be used to fully explore the interpreter’s state, including
the arguments to the native function call.
When evaluating this approach against the criteria set above, it seems like a good
layer to inject the instrumentation, as the callback will be executed for every WebAPI
function call, will have access to the JavaScript’s serialization facilities through the
JSContext and can also use it to capture any relevant information about the caller.
However, using the Debugger object has some challenges, that are not captured by
the evaluation criteria. The first major challenge is that in order to capture native
calls for a given document, the debugger object needs to be attached to it. This
requires there is an appropriately configured debugger object in each web content
process and that it gets attached before any JavaScript starts executing. The second
challenge is, that SpiderMonkey has a just-in-time compiler (JIT), which compiles
often used functions into native code. A compiled function’s call to WebAPI function
would no longer trigger the Debugger callback. To address the first challenge, I would
need to modify the web content process creation code, which is a complex part of
the codebase, so I avoided it for the proof of concept. The second challenge can not
be addressed without deactivating the JIT, which is impossible for official builds of
Firefox as it would result in significant performance loss. While this slowdown might
be acceptable for research crawls, it still makes this option significantly less attractive.
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Binding Layer One layer below the JavaScript interpreter is the generated binding
code, which unwraps the arguments from JavaScript, calls the function and rewraps
the result. This layer is generated by a python parser-generator from WebIDL files.
To instrument at this layer, the parser-generator would need to generate code that
checks if the call should be captured and if so, send all required information to the
main process.
This approach is fully scalable as any WebAPI has to declare its interface in WebIDL.
Since the parser-generator has access to the interface definition with full type in-
formation and argument names when generating the binding code, the generated
serialization code could be written explicitly for the event that is being captured.
Declaring the layout of the message at compile time might allow the compiler to
emit high performance code. Information about the caller would be accessed via
SavedFrame API, that is provided by SpiderMonkey to allow C++ code to access the
current callstack. [24]
This approaches main drawback is also its implementation complexity, as the code
generator is a single 23 thousand line file.

Implementation Layer Below the binding layer is the handwritten implementa-
tion of the WebAPIs. There are countless different files each implementing their
distinct piece of functionality. Instrumentation at this layer requires reading the im-
plementation, figuring out what arguments need to be part of the event and writing
a serialization function by hand.
This approach does not scale, since every existing function and every future function

would need to be manually adjusted. As the serialization code has to be handwritten,
it is also possible to write helper functions to meaningfully serialize complex types.
Information about the caller would also be accessed via SavedFrame.
In contrast to poor scalability, this approach minimizes the effort to instrument a
given arbitrary API call, which makes it ideal for prototyping.

Conclusion I believe the ideal layer for inserting the instrumentation is the binding
layer as the types and names present in the WebIDL definitions would allow generat-
ing serialization code that captures the maximum amount of information possible
and achieve high performance by statically defining the serialization scheme; the
complexity of modifying the code generator and the generated binding code make it
inappropriate for a proof of concept implementation, so I chose the two functions
and implemented them in the handwritten code.
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3.3.2 Configuration Management

To achieve feature parity with the JavaScript instrument, CallMonitor needs to allow
users to dynamically specify which WebAPIs they are interested in. Since polling is
generally discouraged in Firefox, as it always introduces a trade off between resource
overhead, when choosing a small polling interval, and latency, when choosing a big
polling interval, the interface had to be callback based.
As callbacks are a common pattern in the codebase, there also exist conventions
around how such a callback based interface should be designed. The general pattern
is, that the consumer of the API should be able to register their callback and the
associated metadata (in this case the configuration) and in return receive a unique
identifier, that allows them to refer to this registration.
This design allows for multiple consumers to register themselves with the same API

without interfering with one another, but it also complicates the internal state of
the CallMonitor compared to the JavaScript instrument. Instead of baking in one
configuration for a single consumer on startup, CallMonitor needs to maintain a
mapping between identifiers and their associated callback-metadata pair, which can
change at runtime, by consumers registering and unregistering themselves.
This left the following options:

Hard-coded Config As previously established, the WebAPIs get called in a different
process than the one the registration is happening in. Specifying a fixed set of
configurations at compile time and allowing the user to only register their callbacks
for one of these configs, would sidestep the issue of synchronizing the internal state
across multiple processes, especially since new web content processes get created for
each new domain visited.
However, this would be a degradation in user experience compared to the JavaScript
as compiling Firefox is both too resource intensive and too complex for privacy
researchers, when they want to instrument a custom set of WebAPIs.
As there still would be no communication to the web content processes which configs
currently have subscribers, they would still have to send all messages for all configs.
A slight variation on this approach would be to require the callback code to also be
written at compile time, to avoid the last issue mentioned.
While this approach would have been the easiest to implement, it breaks one of the
core requirements, so it was discarded.

Centralized Config The approach I choose for the prototype was to keep the configs
and callbacks exclusively in the CallMonitorParent and not share it out to web content
processes.
This approach allows exposing an API that could achieve feature parity with the

JavaScript instrument, while keeping the implementation complexity low.
As seen in Figure 7 the trade off for this approach is that all events get send to the
main process, where the filtering happens. As PCallMonitor is currently a managed
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Figure 7: An UML sequence diagram showing a single consumer registering with
CallMonitor and then visiting a web page; the page makes a single WebAPI
request, which gets unconditionally propagated to the main process due to
the centralized config approach
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protocol, that might negatively impact the communication between the web content
process and the main process, but as the proof of concept implementation only
instrumented a rarely used functions, there was no such impact.

Distributed Config A production component should not make unnecessary IPC calls
especially since a production-ready CallMonitor component would need to cover all
WebAPIs, which means a single traversal of the DOM could generate hundreds if not
thousands of events. As such web content processes must be able to decide locally
whether an event needs to be sent to the main process.
To be able to make this decision, each content process would need to have at least
the union of all active configs, but possibly better, a mapping from registration token
to config, so it can send a pair of event and list of registration tokens to call via the
EventHappened message.
Figure 8 shows the added round trip of propagating the config to an existing web
content process when a new consumer registers itself as well as the added benefit of
being able to make a local decision in the content process.
What the figure hides is the complexity of keeping all web content processes up
to date. To achieve this, the main process would need to send the content process
the current configuration when the process starts and then incrementally update
the config every time it changes in the main process. As running any web content
in a process without having the configuration initialize would result in missing
events, CallMonitor would require synchronous IPC in the process creation. However,
synchronous IPC is discouraged to the point that Firefox developers need to convince
the IPC to allowlist their call in a special file.
Despite these implementation complexities, I still believe this is the right approach
for a high throughput system.
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3.3.3 Testing

While different parts of the Firefox code base use a variety of testing frameworks,
such as GoogleTest 1, the native Rust framework 2 or xpcshell, a Mozilla internal
framework to test XPCOM components [25], the majority of tests use mochitest, a
JavaScript regression testing framework, that allows testing all scriptable components
of the Firefox codebase [26].
Most mochitest, including mine, perform function testing as defined by Glenford J.
Myers [27], as they do not test the module against the pure interface specification
but rather test, that the component under test meets the external specification. This
is necessary, as there are very few components which exist isolated in the Firefox
code base. Instead, it is common, that to perform a single task a component has to
interact with countless other systems.
All mochitest start a full browser which is then controlled via JavaScript running in
different contexts. These different execution contexts are called flavors. There are
four flavors of mochitest [28]:

• a11y — a11y or accessibility, is the practice of ensuring access to people with
disabilities. All tests ensuring that the browser is usable for these people have
the a11y flavor.

• plain — These tests run in content scope and only have access to a limited
numbers of privileged APIs, through the SpecialPowers object.

• browser — Tests, that aim to test the browsers UI should use this flavor. They
run in privileged scope.

• chrome — These tests are also run in a privileged mode, but aim to test the
privileged APIs.

Originally, I assumed that the xpcshell framework would be sufficient for testing
CallMonitor, however as xpcshell tests don’t create a full browser but instead only
initialize the XPCOM infrastructure, there was no way to submit events, as the
necessary interface is only exposed in the content process, which does not get created
as part of these tests.
Tests should only use as much enhanced access as required to make sure, the real use
case and the test use the same code paths. As such, I evaluated the different flavors
of mochitest against my testing requirements. The a11y flavor was immediately
discarded as CallMonitor is not an accessibility feature. Plain mochitest run in the
content process, which is insuffiecient to test the component as being able to receive
events in the main process is it core purpose. Finally, as CallMonitor does not expose
any UI, using the browser flavor was also out of question.
This left the chrome flavor, which is a fit, as CallMonitor exposes a privileged API in
the main process.
So the test for the proof of concept works as following
1https://github.com/google/googletest
2https://doc.rust-lang.org/book/ch11-00-testing.html
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1. It registers with the CallMonitorManager through the CallMonitorSubscriptionManager
interface

2. It creates a new tab and points it to an HTML file that calls atob

3. It waits until it get notified, that the WebAPI function call has happened

4. It assert that the event contains the expected argument string

This setup tests the entirety of the current implementation. For a more complete
implementation, that also provides the WebExtension API, there would have to be an
additional test, which would need to register as an addon and use the API exposed
there.
While this approach works very well for a proof of concept, it would have significant
problems at scale, as creating a new test file for each WebAPI function wouldn’t scale.
Testing every single instrumented API might not be required, once each API instru-
mentation is no longer handwritten, since a single error in the generated code would
affect all paths.
However, to test a representative number of APIs to ensure, things are working as
expected at scale, it could be reasonable to set up a channel between the web content
and priviliged test context and pass a string to it, on which the web content could
then call eval, which to the instrumentation would be indistinguishable from having
the code be written in the file beforehand, except for perhaps the callstack. As there
are only two functions instrumented in the current implementation, this approach
seemed overly complex.
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4 Evaluation
To evaluate the quality of the current implementation of CallMonitor, I visited the
same website with CallMonitor and OpenWPM’s JavaScript instrument and compared
the collected data.

4.1 Setup
To compare the two instrumentation approaches I chose a configuration of the
JavaScript instrument that included the WebAPIs currently instrumented by CallMoni-
tor.

1 [
2 {" window ": {" propertiesToInstrument ": ["atob", "btoa"]}},
3 " screen "
4 ]

This instructs the instrument to record all calls to btoa and atob and any access to
properties of screen.
As for the CallMonitor configuration, I chose the following config to instrument all
currently instrumented WebAPIs.

1 {items :[
2 { apiName : "Atob"},
3 { apiName : "Btoa"}
4 ]}

4.2 Test case
To compare the two instrumentation approaches I created a website that calls the
instrumented WebAPIs. The relevant code of this website I can be seen in Figure 9.
The code calls the instrumented atob and btoa APIs and the screen APIs which are
currently not instrumented by CallMonitor. The latter are called to demonstrate the
lack of generality in the current proof of concept.
When visiting the website with a Firefox that was compiled with the CallMonitor
component, a subscriber that has the config shown above, collects the events shown
in Table 1.
As I visited the website with OpenWPM and the presented configuration, the

JavaScript instrument recorded its events into the SQLite database. A relevant
subset of columns is shown for all events in Table 2. Data about the extensions, the
tab, window and frame id, as well as the URLs of the script, the top level site and the
current iFrame have been omitted for brevity. For a full event see Figure 3
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1 function func(data) {
2 let encoded_data = window .btoa(data);
3 let decoded_data = window .atob( encoded_data );
4 }
5 function main () {
6 func("abcd");
7 let function_string = window .atob. toString ();
8 if ( function_string . includes ("[ native code]")) {
9 func("efgh");

10 }
11 document . getElementById (
12 " output "
13 ). innerText = ‘The screens coordinates are ${ window . screen .width}

x ${ window . screen . height }‘;
14 }

Figure 9: The JavaScript code of the test website. It calls en- and decodes a string,
then checks if it can detect any tampering with the atob function and if it
can detect no tampering performs a second encoding-decoding roundtrip
with a different string. Finally, it prints the screen size in the output element
on the site.

Records 0 1 2 3
apiName Btoa Atob Btoa Atob

arguments abcd YWJjZA== efgh ZWZnaA==

Table 1: The WebAPI name and the arguments captured by CallMonitor when visiting
the test site

Records 0 1 2 3
script-line 6 7 20 20
script-col 33 33 52 77

func-name func func main main
symbol window.btoa window.atob window.screen.width window.screen.height

operation call call get get
value 1280 720

arguments ["abcd"] ["YWJjZA=="]

Table 2: A subset of the columns recorded by the JavaScript instrument when visiting
the test site. A notable omission are the transformations on "efgh" that were
recorded by CallMonitor

31



4.3 Analysis
The collected data shows, that the website was able to evade the JavaScript instrument
as Table 2 does not show the en- and decoding of "efgh". CallMonitor was able to
record the calls, as the website didn’t have a way to detect it. However, the JavaScript
instrument is still more usable, as it is not limited in the APIs it can instrument and
captures much richer events. While most of these data points could be recorded
through the SavedFrames facilities as discussed in Section 3.3.1, this section compares
the two instruments as they currently are and does not take future possibilities into
account.
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5 Outlook and Further Work
In this section I will evaluate the CallMonitor against the requirements I gave myself
in Section 3.1 and against the JavaScript instrumentation as it exists in OpenWPM
today.
To recap those requirements were:

• Capture the same information as the JavaScript instrument

• Being undetectable

• Follow the official Mozilla coding conventions

• Be easy to maintain, test and extend

As discussed in Section 4 the proof of concept implementation falls short on recording
the same information as the JavaScript instrument, but a fully developed CallMonitor
could capture the same or more information, as discussed in Section 3.3.1.
CallMonitor is undetectable by the methods used to identify the JavaScript instrument
and should also be hard to detect in general as there is no change to the website’s
execution environment. This includes other common evasion techniques such as
abusing the interaction of dynamically created iFrames and WebExtensions content
script [29].
CallMonitor is following the coding conventions in the Firefox code base, it follows
the official naming scheme for XPCOM interfaces, actor protocol definitions and
method names. It uses the custom string and container types provided by the code
base. The existing test uses the most common testing framework and respects
established best practices regarding the level of testing and event handling in test
code.
As discussed in Section 3.3.3 CallMonitor’s test can be easily extended to cover any
enhancements made upon the current proof of concept.
I also discussed in Section 3.3.2 and Section 3.3.1 what enhancements would be
required to achieve a production-ready state. None of these enhancements would
require a fundamental change of the architecture instead they could be progressively
and independently applied. This shows that the current implementation is easy to
extend.
Regarding the maintainability, I don’t think there is a good metric other than that I
kept the code as simple as the problem would allow, which should make it easy to
maintain.
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5.1 Further work
To summarize the findings from these subsections and the evaluation, the following
work would need to be done to achieve a full replacement.

1. Collect data in binding layer using the WebIDL code generator

2. Push the CallMonitor configuration to the content processes

3. Use the SavedFrame API to capture information about the caller

While all of these issues are easily expressed succinctly, their respective implementa-
tions would probably each be another 3-5 month project. So to stay within the limits
of a bachelor’s thesis I constrained myself to implementing a proof of concept and
only explore the full solution theoretically.

5.2 Outlook
Once these improvements have been made, CallMonitor is ready to replace the
JavaScript instrument as part of OpenWPM. This would allow for more robust
and less evadable privacy research and possibly allow to instrument a wider range
of WebAPI function calls as is currently possible due to performance constraints.
However, assuming it becomes part of the official Firefox codebase, the component
could also open up a series of interesting new opportunities for browser developers.
They would be able to instrument their browser dynamically, possibly even on users’
machines through telemetry, to detect how WebAPIs are used in the wild. It would
also be possible to integrate this tooling with the browser’s developer tools, to allow
web developers, to observe what WebAPI function calls their own website makes.
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